
06/08/00 1

Vectrex multicart
Date: 6/7/00

From: Ronen Habot

 Subject: Menu driven multicart

Disclaimer

This document contains technical information regarding a general-purpose multicart concept. Under
any circumstances, this information should not be used to mass manufacture and sell vectrex (or any
other console) multicarts. All the rights to this multicart concept, electronic design and source are
reserved. The writer of this document is not responsible for any console (and equipment) damage or,
body injury caused by following the proposed instructions. To provide the writer more control regarding
the distribution and use of this document, this document can not be printed, copied, or modified without
a password. A password can be achieved individually by sending an email to the following address:
webmaster@vgcollect.freehosting.net.

Introduction

As original game cartridges are becoming harder to find and therefore more expensive, as new games
emerge every now and then and due to shortage in storage space for cartridges, I decided to look into
the possibility of designing my own multicart. In addition, an easy to use and cheap to build were two of
my goals when I first thought about it. The following paper describes in details what is the concept of
the multicart and how does it work. I wrote this paper to let other videogame fans (with some technical
understanding) the ability to better understand the concept and guts of this device.

Although, this paper refers mainly to the vectrex, the same concept can be identically adopted for every
other console of the same type. In order to proof my concept I've built a prototype cartridge and wrote
the menu code for the vectrex console. Since I have only one vectrex console, I can not guarantee that
the following design would work on any other vectrex machine.

Background

A cartridge (usually) contains a single ROM device that is basically a peripheral device of the
microprocessor's bus. The microprocessor is the main controller of the bus and in order to run a game,
it executes predefined set of commands stored in that ROM device. This ROM is not the only
peripheral device attached to the microprocessor's bus, in addition, another ROM (that resides in the
console itself) stores the BIOS subroutines, the startup procedures and the built in Mine Storm game,
as well as a RAM and other devices.

Vectrex Multicart: How does it work?

06/08/00 2

Anyway, to the cartridge edge connector only partial set of the microprocessor's bus are routed, which
makes it a bit tougher to handle. Included in the provided signals are the signals that are essential for
an external ROM to operate with couple of additional signals such as HALT and more. The actual
signals that are provided to the ROM device are: Address bus A14 down-to A0 (enables 32K of ROM
directly accessed, although the microprocessor has 16 address bits only 15 bits are provided to the
cartridge), Data bus D7 down to D0, Read not (active low), Chip Enable not(active low). In addition a
programmable I/O port is provided to the cartridge. This port can be used for instance, to generate a
16th address bit for code larger than 32K. Although the vectrex cartridge connector provide the R/W~
signal, I decided to ignore its existence, due to my main goal of a general purpose, console
independent multicart design.

One more aspect to keep in mind is the software. The software can be located within a 64K bytes
address range and can jump to any location within this range. All vectrex programs start at address
0x0000. They all begin with a special identification header that is being detected by the BIOS start-up
routines to determine whether there is a cartridge or not (and if not, the internal MINE STROM is
launched).

Let's summarize what we know already:

- Each cartridge has (a straight forward) access to 32K bytes address space.

- Each cartridge has a Read, Chip enable signal but no Write signal (some console might
have it but in this paper it is assumed not to be part of the provided bus to the cartridge).

- Address 0x0000 of any game contains a header detected by the console at power-up.

The multicart concept

To implement a multicart all what needs to be done is to cause the console to see any selected game
at address 0x0000. In other words, if there is a way to cause the console to see at its address 0x0000 a
different game at start-up the goal is completely achieved. This is the basic concept behind the "dip-
switch" type of multicarts. To implement this concept, all what is needed is a large 8-bit memory (large
enough to accommodate all the desired games) and a mechanism (dip-switch) to set a starting address
for a selected game following the next guidelines:

Let's assume that the game size is 4K (4096) bytes. To access all the instructions for this game 12
(212= 4096) address bits are needed. If we place this game at location 0x0000 there is no problem at
all. Now, let's add one more game into the same memory, but in a different location - at address
0x1000 (which is the 2nd 4K bank of the same memory). With no external switching mechanism, every
time we power up the console, obviously, the game residing at address 0x0000 will be played with no
way to start playing the second game. On the other hand, if we have 3 dip-switches to replace address
bits A14 down to A12, we could pre-define an offset (by setting them to the right value) for a different
memory location (and thus a different game), plug it into the cartridge slot and turn the power on.
Therefore, to play the 1st game the dip-switch value is 000 and for the 2nd game 001. Since the
microprocessor doesn't "care" about addresses higher than 0x0FFF for each game (and therefore has
address bits A14, A13 and A12 always 0) this concept works fine. I must admit that this method has
some difficulties with a variation in game sizes (as the vectrex games do) but, this is the basic concept
and not the whole solution.

Vectrex Multicart: How does it work?

06/08/00 3

Menu driven multicart

The concept in this case is the same. The major difference is that there is no physical dip-switch
anymore but a simple memory element (D-LATCH) that latches the most significant bits (MSB) of the
address based on the player selection for a specific game. Let's just keep in mind that the cartridge
does not have access to the microprocessor's Write signal - which make it a bit tougher to handle.

The missing Write signal is the first obstacle in our way towards the end product. The solution for this is
a bit tricky and here is how to solve it: The basic idea is to write (required game offset) through read
only operation. This is achieved by predefining an address (one or more) that once the program read
from, the required offset is written into the MSB latch. To implement that, an address decoder has to be
designed to issue a latch enable once all the conditions (access to the predefined address and read
active and chip select active) are met. The next question is what should the latch capture address or
data? I think that latching address is simpler since the data has to be both meaningful for the
microprocessor and also, to point to the correct offset. Address on the other-hand changes the
execution location on the fly but in my opinion it is easier to handle and therefore this is the approach
that was implemented.

The following section shows the whole memory map of the multicart. It assumes 512K bytes ROM
(Actually Am29F040-PC120) to be used for this purpose. In general, the whole address space is
divided into 4 banks of 128K each. The idea is to support a variety of game sizes (4K, 8K, 16K and
32K). Each bank can contain games smaller (or equal) in size to the specified size. The next table
describes better the meaning of that idea:

Bank Address range Bank Type Supported game sizes

0x000000

0x1FFFFF

4K 4K

0x200001

0x2FFFFF

8K 4K / 8K

0x400002

0x5FFFFF

16K 4K / 8K / 16K

0x600003

0x7FFFFF

32K 4K / 8K / 16K / 32K

Vectrex Multicart: How does it work?

06/08/00 4

A more detailed table with all the game locations, sizes and ranges is provided below:

A[14:0] - 32K ROM A[18:0] - 512K ROM JMP Content

0K 0000 000 0000 0000 0000 000 0000 0000 0000 0000 - Menu Prg
0FFF 000 1111 1111 1111 000 0000 1111 1111 1111

4K 1000 001 0000 0000 0000 000 0001 0000 0000 0000 7F02 Armor Attack
1FFF 001 1111 1111 1111 000 0001 1111 1111 1111

8K 2000 010 0000 0000 0000 000 0010 0000 0000 0000 7F04 Art Master
2FFF 010 1111 1111 1111 000 0010 1111 1111 1111

12K 3000 011 0000 0000 0000 000 0011 0000 0000 0000 7F06 Bedlam
3FFF 011 1111 1111 1111 000 0011 1111 1111 1111

16K 4000 100 0000 0000 0000 000 0100 0000 0000 0000 7F08 Berzerk
4FFF 100 1111 1111 1111 000 0100 1111 1111 1111

20K 5000 101 0000 0000 0000 000 0101 0000 0000 0000 7F0A 4D Rotcub
5FFF 101 1111 1111 1111 000 0101 1111 1111 1111

24K 6000 110 0000 0000 0000 000 0110 0000 0000 0000 7F0C Castle
6FFF 110 1111 1111 1111 000 0110 1111 1111 1111

28K 7000 111 0000 0000 0000 000 0111 0000 0000 0000 7F0E ROM dump
. . .
. . .

7F00 111 1111 0000 0000 000 0111 1111 0000 0000 Jump table
7F01 111 1111 0000 0001 000 0111 1111 0000 0001
7F02 111 1111 0000 0010 000 0111 1111 0000 0010 Armor Attack
7F03 111 1111 0000 0011 000 0111 1111 0000 0011
7F04 111 1111 0000 0100 000 0111 1111 0000 0100 Art Master

. . .

. . .

. . .

. . .
7FEC 111 1111 1111 1100 000 0111 1111 1111 1100
7FFD 111 1111 1111 1101 000 0111 1111 1111 1101
7FFE 111 1111 1111 1110 000 0111 1111 1111 1110
7FFF 111 1111 1111 1111 000 0111 1111 1111 1111

32K 8000 ---Not Available --- 000 1000 0000 0000 0000 7F10 Chasm
000 1000 1111 1111 1111

36K 9000 ---Not Available --- 000 1001 0000 0000 0000 7F12 hyper
000 1001 1111 1111 1111

40K A000 ---Not Available --- 000 1010 0000 0000 0000 7F14 mine2
000 1010 1111 1111 1111

44K B000 ---Not Available --- 000 1011 0000 0000 0000 7F16 ripoff

Vectrex Multicart: How does it work?

06/08/00 5

000 1011 1111 1111 1111

48K C000 ---Not Available --- 000 1100 0000 0000 0000 7F18
000 1100 1111 1111 1111

52K D000 ---Not Available --- 000 1101 0000 0000 0000 7F1A Scarmble
000 1101 1111 1111 1111

56K E000 ---Not Available --- 000 1110 0000 0000 0000 7F1C Solar
000 1110 1111 1111 1111

60K F000 ---Not Available --- 000 1111 0000 0000 0000 7F1E Space
000 1111 1111 1111 1111

64K 10000 ---Not Available --- 001 0000 0000 0000 0000 7F20 Starhawk
001 0000 1111 1111 1111

68K 11000 ---Not Available --- 001 0001 0000 0000 0000 7F22 Startrek
001 0001 1111 1111 1111

72K 12000 ---Not Available --- 001 0010 0000 0000 0000 7F24 Sweep
001 0010 1111 1111 1111

76K 13000 ---Not Available --- 001 0011 0000 0000 0000 7F26 test cart
001 0011 1111 1111 1111

80K 14000 ---Not Available --- 001 0100 0000 0000 0000 7F28 Trek2
001 0100 1111 1111 1111

84K 15000 ---Not Available --- 001 0101 0000 0000 0000 7F2A Vectrace
001 0101 1111 1111 1111

88K 16000 ---Not Available --- 001 0110 0000 0000 0000 7F2C Vpong
001 0110 1111 1111 1111

92K 17000 ---Not Available --- 001 0111 0000 0000 0000 7F2E
001 0111 1111 1111 1111

96K 18000 ---Not Available --- 001 1000 0000 0000 0000 7F30
001 1000 1111 1111 1111

100K 19000 ---Not Available --- 001 1001 0000 0000 0000 7F32
001 1001 1111 1111 1111

104K 1A000 ---Not Available --- 001 1010 0000 0000 0000 7F34 Engine
001 1010 1111 1111 1111

108K 1B000 ---Not Available --- 001 1011 0000 0000 0000 7F36
001 1011 1111 1111 1111

112K 1C000 ---Not Available --- 001 1100 0000 0000 0000 7F38

Vectrex Multicart: How does it work?

06/08/00 6

001 1100 1111 1111 1111

116K 1D000 ---Not Available --- 001 1101 0000 0000 0000 7F3A
001 1101 1111 1111 1111

120K 1E000 ---Not Available --- 001 1110 0000 0000 0000 7F3C
001 1110 1111 1111 1111

124K 1F000 ---Not Available --- 001 1111 0000 0000 0000 7F3E
001 1111 1111 1111 1111

From here 8K games area starts
128K 20000 ---Not Available --- 010 0000 0000 0000 0000 7F40 3d crazy cst

010 0001 1111 1111 1111

22000 ---Not Available --- 010 0010 0000 0000 0000 7F44 Blitz
010 0011 1111 1111 1111

24000 ---Not Available --- 010 0100 0000 0000 0000 7F48 Crazy
010 0101 1111 1111 1111

26000 ---Not Available --- 010 0110 0000 0000 0000 7F4C Heads up
010 0111 1111 1111 1111

28000 ---Not Available --- 010 1000 0000 0000 0000 7F50 Melody
010 1001 1111 1111 1111

2A000 ---Not Available --- 010 1010 0000 0000 0000 7F54 3d mine
010 1011 1111 1111 1111

2C000 ---Not Available --- 010 1100 0000 0000 0000 7F58 3d narrow
010 1101 1111 1111 1111

2E000 ---Not Available --- 010 1110 0000 0000 0000 7F5C Narzod
010 1111 1111 1111 1111

30000 ---Not Available --- 011 0000 0000 0000 0000 7F60
011 0001 1111 1111 1111

32000 ---Not Available --- 011 0010 0000 0000 0000 7F64 Polar
011 0011 1111 1111 1111

34000 ---Not Available --- 011 0100 0000 0000 0000 7F68 Pole
011 0101 1111 1111 1111

36000 ---Not Available --- 011 0110 0000 0000 0000 7F6C Spike
011 0111 1111 1111 1111

38000 ---Not Available --- 011 1000 0000 0000 0000 7F70 Spinball
011 1001 1111 1111 1111

Vectrex Multicart: How does it work?

06/08/00 7

3A000 ---Not Available --- 011 1010 0000 0000 0000 7F74
011 1011 1111 1111 1111

3C000 ---Not Available --- 011 1100 0000 0000 0000 7F78 Webwars
011 1101 1111 1111 1111

3E000 ---Not Available --- 011 1110 0000 0000 0000 7F7C
011 1111 1111 1111 1111

From here 16K games area starts
256K 40000 ---Not Available --- 100 0000 0000 0000 0000 7F80 Vaboom

100 0011 1111 1111 1111

44000 ---Not Available --- 100 0100 0000 0000 0000 7F88
100 0111 1111 1111 1111

48000 ---Not Available --- 100 1000 0000 0000 0000 7F90 Darktower
100 1011 1111 1111 1111

4C000 ---Not Available --- 100 1100 0000 0000 0000 7F98 Spikesh
100 1111 1111 1111 1111

50000 ---Not Available --- 101 0000 0000 0000 0000 7FA0
101 0011 1111 1111 1111

54000 ---Not Available --- 101 0100 0000 0000 0000 7FA8 Galaxian
101 0111 1111 1111 1111

58000 ---Not Available --- 101 1000 0000 0000 0000 7FB0 Frogger
101 1101 1111 1111 1111

5C000 ---Not Available --- 101 1100 0000 0000 0000 7FB8
101 1111 1111 1111 1111

From here 32K games area starts
384K 60000 ---Not Available --- 110 0000 0000 0000 0000 7FC0

110 0111 1111 1111 1111

68000 ---Not Available --- 110 1000 0000 0000 0000 7FD0
110 1111 1111 1111 1111

70000 ---Not Available --- 111 0000 0000 0000 0000 7FE0
111 0111 1111 1111 1111

78000 ---Not Available --- 111 1000 0000 0000 0000 7FF0
111 1111 1111 1111 1111

512K END OF MEMORY - No more games

Vectrex Multicart: How does it work?

06/08/00 8

Implementation
The implementation is based mostly on address manipulation and not on data. The basic idea, is to
define a way that when the PC of the microprocessor jumps to, will latch a desired offset for the MSB of
the ROM in the latch (the electronic "dip-switch"). This is achieved by the following means - address
space 0x7F00 to 0x7FFF (256Bytes) is reserved for that purpose. Now, when a game is selected
through the selection menu, the program jumps to a predefined address (provided in the last table) and
in that instance here is what happens:

� The external address bus is logically divided into two sections: the "valid jump" address, which, in
that case address bits A14 down-to A8 are all '1' (logic high) and the offset, which in this case is
address bits A7 down-to A1.

� A decoding logic "detects" that the current address is a "valid jump" address and this is what
enables the latch to store the offset - provided by address bits A7 down-to A1.

� The latch outputs are routed to the ROM most significant bits and remain unchanged for the whole
game play. In that way, even though the game is stored in high address space, to the console it
looks like as 0x0000 based game.

� At the end of the game, whenever the (BIOS routine) warm or cold start procedure is called by the
original game, the PC goes through address 0x0000. This address is being decoded (as well) and
a latch-enable is being generated (same as if it would be a "valid address") which in response
latches all '0' as an offset. As a result, the menu program is being executed again (since it is
located at address 0x0000). The only disadvantage of this approach is that the player has to brows
through the menu and select a game every time a game ends, even if it the same game (this could
be solved if there was a way to store the played game index in such a way that any played game
wouldn't change - within the EPLD for instance).

To implement this logic, I've used an EPLD device that can electronically be erased and reprogrammed
with a new content (design). The selected address space of 0x7FXX has been chosen due to the
decoding ease - simply an AND gate that get all the relevant address bits as inputs.

Now, with all the above knowledge, let's have a short demonstration of how does the concept work by
drawing the timing diagrams of the inputs and the outputs of the EPLD. For this example, let's assume
that address bits A11 down-to A4 are connected directly to the Flash and are not passing through the
EPLD.

EPROM
Address

Data

Read

Chip-Sel

7F02

FLASH
Address 01F02 01F03

7F03

Vectrex Multicart: How does it work?

06/08/00 9

In this example, the player has selected ARMOR ATTACK, in response, the PC is modified to be
0x7F02. As a result, the value shown above in the Flash Address waveform indicates the location of
the code that is going to be executed from the Flash. In that case, this location is towards the end of the
game (where data structures are stored) which is not a meaningful code for the microprocessor to
execute. Therefore, an additional logic has to be added to the EPLD to overcome this problem. The
solution is as follows: these address bits (A11 down-to A4) should be masked (forced to be '0') while
the "valid address" condition is met. Implementing this approach would provide the following timing
diagram:

EPROM
Address

Data

Read

Chip-Sel

7F02

FLASH
Address 01002 01003

7F03

47 43

In this case, the address is correct, but, the data read from the Flash is part of the Vectrex header that
must be present at the beginning of each game (in this case the letters GC that are part of the "© GCE
____" that shows up after turning the console on with a cartridge inserted) and not actual code. That
can cause (and actually does) the microprocessor to execute invalid instructions and eventually the
screen becomes blank. So, here is a new problem. One more thing to keep in mind is that each game
has a different header length and therefore, the actual game starts in a different offset relatively to the
starting address. The solution for this problem is as follows: In the main program, a table is predefined
with 2 columns:

1. The physical address location of each game (as described in the previous table).

2. The first code address after the game's header (for "ARMOR ATTACK" the address is 0x1F).

So, just before the "jump" to the desired 0x7Fxx address is executed, register D (of the 6809) is loaded
with the first code address of the selected game. And, since, the header of the game is no longer
needed (all what we want is to start playing the game) the pointed addresses content is swapped
(manually, through a binary editor) with the following op-codes: 0x1F followed by 0x05 - which translate
to TFR D,PC. In that case, the microprocessor is executing a command that changes the PC to point to
the beginning of the selected game, which causes the game to be immediately executed. Please note,
that here since there is no 0x7Fxx involved, no new address is being latched and there is no problem
with the offset. In that case the timing diagram (for "ARMOR ATTACK") looks as shown below:

Vectrex Multicart: How does it work?

06/08/00 10

EPROM
Address

Data

Read

Chip-Sel

7F02

FLASH
Address 01002 01003

7F03

1F 05

001F

0101F

0020

01020

1st instruction 2nd instruction

In this case, the game is executed with no issues till it gets to its end. At this point, either warm or cold
start routines is called from the BIOS, which causes the address to restart the cartridge detecting
procedure again. This ensures that the address bus becomes 0x0000. In response, the decoding logic
(within the EPLD) is latching the offset - 0x00 that points back to the main program - the menu
selection. This decoding logic is also useful at power-up where the D-Latch comes with unknown
values, and as a result 0x00 is latched to guarantee the proper start of the main menu program.

This description, would have come to its end if all the games were of the same size. As we all know,
there are games that occupy larger amounts of memory. The following section describes the approach
that was implemented to support this variety of game sizes on one hand, and to avoid any unused
memory space on the other hand.

The most straight-forward approach is to divide the memory into equal size segments, of the same size
as the largest supported game (e.g., 32K byte). The disadvantage of this method is, obviously, the
waist of memory space for the smaller sized games (28K bytes are waisted for each 4K bytes game).
In order to avoid this type of memory utilization, I divided the whole memory space into 4 (equal size)
segments of 128Kbytes each. The 1st segment is identified as the 4K games segment, the 2nd segment
as the 8K games, the 3rd as the 16K and the 4th segment is identified as the 32K games. Now, let's
keep in mind that for 4K games, 12 address bits are required and therefore, the rest of the Flash's
address bits (A18 down-to A12) can be latched and remain unchanged for the whole game play (as
long as the game is smaller than 4K bytes). Since the microprocessor actually doesn’t activate any
address bit beyond A11. As 8K games go, the microprocessor won't toggle any address bit beyond
A12 - but A12 has to be provided by the microprocessor towards the Flash. Same approach is applied
for larger game sizes: for 16K games the microprocessor won't change ant address bit beyond A13
and for 32K games A14 is still controlled by the microprocessor. The segmentation is defined by the 2
MSB of the address space - A18 and A17. An additional decoding logic has been added to decode the
address segmentation as follows:

A[18:17] Segment

00 4K

01 8K

10 16K

11 32K

Vectrex Multicart: How does it work?

06/08/00 11

There are 3 bits that are relevant for the game size as far as the Flash is concerned - A[14:A12]. The
output of the decoding logic is basically a multiplexer selection for each one of these 3 bits as described
below:

� For 4K games, A[14:12] are latched and steady through the whole game. The multiplexer selects
the D-LATCH outputs and routes them towards the Flash.

� For 8K games, A[14:13] are latched and steady and A12 (that changes trough the game play) is
provided - unlatched - to the Flash.

� For 16K games, A14 is latched and A[13:12] are provided - unlatched - to the Flash.

� For 32K games, A[14:12] are provided - unlatched - to the Flash.

Under these conditions, a game, smaller in size than the segment's name can fit into it. The
disadvantage is the overhead penalty but if there is no other choice, it is better than nothing…

The next drawing depicts the cartridge (or EPORM replacement) schematics. The required
components are a Flash (or similar sized) EPROM and the EPLD device. Please note that there are pin
differences between different Flash devices.

Vectrex Multicart: How does it work?

06/08/00 12

The following schematic represents the content of the EPLD device.

The code
The ROM content is assembled in several steps as described in the following section. The required
steps are as follows:

� Menu program

� Game conversion (and modification)

� Bank compilation

� BIN generation

The 1st step is to write the code for the menu of the game selection. Since printing the whole game list
at once on the Vectrex screen is too flickering, I wrote a scrolling menu. The player selects a game by
pressing controller #1's buttons 1/2 for up/down single step, or 3 & 1/2 for multiple steps browsing
through the complete game list. To start a selected game, button 4 has to be pressed.

Next, the 2nd step involves with converting the game BIN files into a form that is easy to recompile and
modified as needed. For that purpose I've used a couple of (UNIX) scripts that convert the BIN files into
bytes in hex format, then add the assembler command - FCB and in that way, each BIN file has been
converted to a file with the .inc extension. In that phase of preparation, I also modified the right header
location as described in the implementation section. An example for this type of file is provided below:

FCB $67,$20,$47,$43,$45,$20,$31,$39,$1F,$05,$80,$fd,$1d,$f8,$50,$20

Vectrex Multicart: How does it work?

06/08/00 13

FCB $d0,$42,$45,$52,$5a,$45,$52,$4b,$80,$00,$cc,$02,$00,$bd,$f7,$a9

FCB $96,$79,$47,$97,$82,$0f,$21,$0f,$22,$bd,$f5,$33,$0f,$67,$bd,$f1

…

The 3rd step involves with preparing the 64K banks of the code to be later merged into a single BIN file.
For this purpose additional 8 assembler files were created with the following content:

� ORG command for the game location relative to the bank beginning.

� INCLUDE command for the .inc file of the desired game.

This file is compiled and the BIN file is used in the final (4th) step.

An example for such a file is shown below:
;will be placed at 0x20000
;Where 8K games start

ORG 0x0000
INCLUDE "src/multi/games/3dczycst.inc"

ORG 0x2000
INCLUDE "src/multi/games/blitz.inc"

…

Then, the final step is to merge the menu program and the 7 additional 64K banks into a single BIN file.
This was done through a BIN editor (available freely on the WWW) and then saved as a new BIN file.
This new 512K BIN file was then programmed into the Flash memory. Please note that the 1st 64K
bank has the menu program in it. It also contains the ORG & INCLUDE commands for rest of the
games located in this bank.

The source code of the menu program is listed below. Please note that not all the released Vectrex are
present - mostly to the fact that I did not receive an explicit permission from their writers to include them
here. The end of the menu code contains the INCLUDE commands for the rest 60K of the 1st 64K
bank.
;**
; VECTREX MULTICART - MAIN MENU SELECTION PROGRAM
; Written by Ronen Habot, May-2000
; All rights reserved
;**

INCLUDE "src/multi/whole/vectrex.inc"

;**
; General constants
;**
NUMBER_OF_GAMES EQU 39
NUMBER_OF_GAMES_ON_SCRN EQU $05
MENU_LINE_SIZE EQU $15
MENU_LINE_SPACE EQU $10
MENU_Y_POS EQU $40
MENU_X_POS EQU $E5

;**
; Table definition of games in the memory
;**

Vectrex Multicart: How does it work?

06/08/00 14

;4K games start here...
ARMOR_JMP EQU $7F02
ART_JMP EQU $7F04
BEDLAM_JMP EQU $7F06
BERZERK_JMP EQU $7F08
D_ROTOCU_JMP EQU $7F0A
SCASTLE_JMP EQU $7F0C
ROM_JMP EQU $7F0E
CHASM_JMP EQU $7F10
HYPER_JMP EQU $7F12
MINE2_JMP EQU $7F14
RIPOFF_JMP EQU $7F16
EMPTY_4K_0_JMP EQU $7F18 ;;
SCRAMBLE_JMP EQU $7F1A
SOLAR_JMP EQU $7F1C
SPACEWAR_JMP EQU $7F1E
SHAWK_JMP EQU $7F20
STREK_JMP EQU $7F22
SWEEP_JMP EQU $7F24
TEST_JMP EQU $7F26
STREK2_JMP EQU $7F28
VRACE_JMP EQU $7F2A
VPONG_JMP EQU $7F2C
EMPTY_4K_1_JMP EQU $7F2E ;;
POP_JMP EQU $7F30
EMPTY_4K_2_JMP EQU $7F32 ;;
ENGINE_JMP EQU $7F34
EMPTY_4K_3_JMP EQU $7F36
EMPTY_4K_4_JMP EQU $7F38
EMPTY_4K_5_JMP EQU $7F3A
EMPTY_4K_6_JMP EQU $7F3C
EMPTY_4K_7_JMP EQU $7F3E
;8K games start here...
D_CRAZY_JMP EQU $7F40
BLITZ_JMP EQU $7F44
STARDEMO_JMP EQU $7F48
HEADSUP_JMP EQU $7F4C
MELODY_JMP EQU $7F50
D_MINESTORM_JMP EQU $7F54
D_NARROW_JMP EQU $7F58
FNARZOD_JMP EQU $7F5C
EMPTY_8K_0_JMP EQU $7F60 ;;
POLAR_JMP EQU $7F64
POLE_JMP EQU $7F68
SPIKE_JMP EQU $7F6C
SPINB_JMP EQU $7F70
EMPTY_8K_1_JMP EQU $7F74 ;;
WEBWAR_JMP EQU $7F78
EMPTY_8K_2_JMP EQU $7F7C
;16K games start here...
VABM_JMP EQU $7F80
SPIKEHOP_JMP EQU $7F88
DARKT_JMP EQU $7F90
SPIKESH_JMP EQU $7F98
EMPTY_16K_0_JMP EQU $7FA0 ;;
GALAXIAN_JMP EQU $7FA8
FROGGER_JMP EQU $7FB0
EMPTY_16K_1_JMP EQU $7FB8 ;;
;32K games start here...
EMPTY_32K_0_JMP EQU $7FC0 ;;
EMPTY_32K_1_JMP EQU $7FD0 ;;
EMPTY_32K_2_JMP EQU $7FE0 ;;

Vectrex Multicart: How does it work?

06/08/00 15

EMPTY_32K_3_JMP EQU $7FF0 ;;

;**
;Address of 1st opcode after the game header
;**
D_CRAZY_START EQU $0020 ;v?
D_MINESTORM_START EQU $0020 ;v
D_NARROW_START EQU $0024 ;v
D_ROTOCU_START EQU $000E ;v
AGT_START EQU $0038 ;v?
ARMOR_START EQU $001E ;v
ART_START EQU $0021 ;v
BEDLAM_START EQU $001E ;v
BERZERK_START EQU $001A ;v
BLITZ_START EQU $0019 ;v
SWEEP_START EQU $001E ;v
CHASM_START EQU $001F ;v
DARKT_START EQU $0021 ;v
ENGINE_START EQU $0022 ;v?
FNARZOD_START EQU $002D ;v
FROGGER_START EQU $003A ;v?
GALAXIAN_START EQU $0048 ;v?
ROCKS_START EQU $0023 ;v?
HEADSUP_START EQU $001B ;v
HYPER_START EQU $001D ;v
MELODY_START EQU $0024 ;v
MINE2_START EQU $0016 ;???
MOON_START EQU $001E ;v?
OMEGA16K_START EQU $001E ;v?
PATRIOT_START EQU $0041 ;v
POLAR_START EQU $001F ;v
POLE_START EQU $004F ;v
RIPOFF_START EQU $0022 ;v
ROM_START EQU $001B ;v
SCRAMBLE_START EQU $001B ;v
SOLAR_START EQU $001E ;v
SPACEWAR_START EQU $001D ;v
SPIKE_START EQU $0018 ;v
SPIKEHOP_START EQU $0014 ;v?
SPINB_START EQU $001B ;v
SCASTLE_START EQU $001E ;v
STARDEMO_START EQU $0036 ;v?
SHAWK_START EQU $001C ;v
STREK_START EQU $0027 ;v
STREK2_START EQU $0027 ;v?
SWB_ANA_START EQU $0038 ;v?
TEST_START EQU $001D ;v
VABM_START EQU $001A ;v
VADERS_START EQU $0080 ;v
VRACE_START EQU $001B ;v
VM_BNK1_START EQU $002C ;v?
VM_BNK2_START EQU $002C ;v?
VPONG_START EQU $0039 ;v
WEBWAR_START EQU $001D ;v

;**
; Temporary variables that are going to be overwritten by the selected game
; when started.
;**
TempByte EQU $C880
GameIndex EQU $C881

Vectrex Multicart: How does it work?

06/08/00 16

FrameYpos EQU $C882
GameAddress EQU $C884
Vec_Text_Width_neg EQU $C886
game_cur_list EQU $CA00

;**
; Begin of the menu code:
;**

CODE
ORG $0000

FCC "g GCE 2000"
FCB $80
FDB $FD81
FDB $f850
FDB $00B0
FCC "VECTREX MULTI CART"
FCB $80

FDB $FA40
FDB $A6C0
FCC "g RONEN HABOT, REV 01"
FCB $80

FDB $FA40
FDB $90C0
FCC "ALL RIGHTS RESERVED"
FCB $80
FCB $0

LDA #$00 ;Clear required parameters
STA GameIndex
STA TempByte

LDD #$FC20 ;Set the H and W of the text
STD Vec_Text_HW

JSR update_menu_list ;Initialize menu in RAM

;**
; Main program starts here
;**
menustart:

JSR Wait_Recal ;reset the crt
LDA #$7f ;get the inte
STA VIA_t1_cnt_lo ;Set the VIA_t1_lo register
JSR Intensity_to_a ;set intensity
JSR print_names ;Print the names on the screen
JSR print_frame ;Draw the frame at the center
JSR menu_check_btns ;Check the buttons of controller #1
JSR update_menu_list ;Update the list to be printed
BRA menustart ;end of main loop

;**
; This procedure is the main idea behind the whole multicart concept:
; Based on the GameIndex the program jumps to a predefined location that
; will be captured by the ALTERA (EPLD device) and then 2 things will happen:
; 1. The offset will be stored in the ALTERA's latch and be constant for the

Vectrex Multicart: How does it work?

06/08/00 17

; whole gameplay.
; 2. The PC will get the offset required to start the selected game.
; In case of games greater than 4K, the MSB of the target address has to be set.
;**
start_selected_game:

LDU #start_loc_tbl
LDB GameIndex
CLRA
ADDD TempByte
ADDD TempByte
ADDD TempByte
ADDD #$02 ;A=(4*GameIndex)+2
LDX D,U ;X <- JMP address
SUBD #$02 ;A=(4*GameIndex)
LDD D,U ;D <- Value for PC right after JMP
TFR X,PC ;Actually jump to X

;**
; Gets the GameIndex and modifies the printed portion of the menu accordingly.
;**
update_menu_list:

LDA #MENU_LINE_SIZE ;
LDB GameIndex ;
MUL ;A*B
LDX #games_list ;X <- ptr to games_list
LEAX d,x ;X <- X+D
LDU #game_cur_list ;U <- ptr to game_cur_list
LDA #NUMBER_OF_GAMES_ON_SCRN ;A <- No. of entries in the menu

mov_rom2ram:
LDB ,x+ ;B <- source data from ROM
STB ,u+ ;B -> destination in RAM
CMPB #$80 ;Search for the end-of-string
BNE mov_rom2ram ;If not found, keep copying...
DECA ;Dec. No. of lines to copy
BNE mov_rom2ram ;Check if all menu lines copied

LDX #game_cur_list ;X <- ptr to game_cur_list in RAM
LDA #NUMBER_OF_GAMES_ON_SCRN ;A <- No. of lines in the menu
LDB #MENU_Y_POS ;B <- Ypos of the menu

update_cur_loc:
STB ,x ;B -> *X
SUBB #MENU_LINE_SPACE ;B <- B-space between lines
LEAX MENU_LINE_SIZE,x ;X <- X+CONST to point to next line
DECA ;A <- A - 1
BNE update_cur_loc ;Check if end of menu,if not keep update
RTS ;Return to main program

;**
; Print the games list on the screen and return to main menu.
; The names to print are stroed in the RAM by this point in time.
;**
print_names:

LDU #game_cur_list ;U <- RAM location of the menu
LDA #NUMBER_OF_GAMES_ON_SCRN ;A <- No. of entries in the menu

print_cur_line:
PSHS a,u ;Store A,U in the stack
JSR Print_Str_xy ;Print the current entry of the menu
PULS a,u ;Restore A and U from the stack
LEAU MENU_LINE_SIZE,u ;U <- U+line size
DECA ;A <- A-1

Vectrex Multicart: How does it work?

06/08/00 18

BNE print_cur_line ;check if end of menu,if not keep update

LDU #menu_inst_text ;U <- ptr to instruction line
JSR Print_Str_xy ;Print on screen the instruction line
RTS ;Return to main program

;**
; Draws a box arround the center of the menu to indicate selected game
;**
print_frame:

JSR Reset0Ref_D0 ;Move beam to center
LDA #(MENU_Y_POS-5*MENU_LINE_SPACE/2-2) ; Calc. Ypos of box
LDB #(MENU_X_POS) ; Calc. Xpos of box
JSR Moveto_d ;Move beam to the Y,X pos
LDX #text_frame ;X <- ptr to the box
JSR Draw_VLc ;Draw the box
RTS ;Return to main program

;**
; This is the ROM portion of the menu. The game list is the complete list.
; According to the GameIndex, 5 lines are copied to the RAM to be displayed.
;**
games_list:

DB $00,$E5," ", $80
DB $00,$E5," ", $80
DB $00,$E5," 3D CRAZY CLIMBER ", $80 ;
DB $00,$E5," 3D MINE STORM ", $80 ;
DB $00,$E5," 3D NARROW ESCAPE ", $80 ;
DB $00,$E5," 4D ROTOCUBE ", $80 ;
DB $00,$E5," ARMOR ATTACK ", $80 ;
DB $00,$E5," ART MASTER ", $80 ;
DB $00,$E5," BEDLAM ", $80 ;
DB $00,$E5," BERZERK ", $80 ;
DB $00,$E5," BLITZ! ", $80 ;
DB $00,$E5," CLEAN SWEEP ", $80 ;
DB $00,$E5," COSMIC CHASM ", $80 ;
DB $00,$E5," DARK TOWER ", $80 ;
DB $00,$E5," ENGINE ANALYZER ", $80 ;
DB $00,$E5,"FORTRESS OF NAZROD", $80 ;
DB $00,$E5," FROGGER ", $80 ;
DB $00,$E5," GALAXIAN ", $80 ;
DB $00,$E5," HEADS UP ", $80 ;
DB $00,$E5," HYPERCHASE ", $80 ;
DB $00,$E5," MELODY MASTER ", $80 ;
DB $00,$E5," MINE STORM 2 ", $80 ;
DB $00,$E5," POLAR RESCUE ", $80 ;
DB $00,$E5," POLE POSITION ", $80 ;
DB $00,$E5," RIP OFF ", $80 ;
DB $00,$E5," ROM DUMP ", $80 ;
DB $00,$E5," SCRAMBLE ", $80 ;
DB $00,$E5," SOLAR RESCUE ", $80 ;
DB $00,$E5," SPACE WARS ", $80 ;
DB $00,$E5," SPIKE ", $80 ;
DB $00,$E5," SPINBALL ", $80 ;
DB $00,$E5," STAR CASTLE ", $80 ;
DB $00,$E5," STAR DEMO ", $80 ;
DB $00,$E5," STAR HAWK ", $80 ;
DB $00,$E5," STAR TREK ", $80 ;
DB $00,$E5," STAR TREK 2 ", $80 ;

Vectrex Multicart: How does it work?

06/08/00 19

DB $00,$E5," TEST CART ", $80 ;
DB $00,$E5," VABOOM! ", $80 ;
DB $00,$E5," VECTRACE ", $80 ;
DB $00,$E5," VPONG ", $80 ;
DB $00,$E5," WEBWARS ", $80 ;
DB $00,$E5," ", $80
DB $00,$E5," ", $80

;**
; Instruction line to be printed below the menu...
;**
menu_inst_text:

DB $95,$C5,"SELECT GAME AND PRESS 4 TO START", $80

;**
; To identify the selected game...
;**
text_frame:

FCB 3
FCB 14,0
FCB 0,85
FCB -14,0
FCB 0,-85

;***
; check_btns - poll controller1 buttons 1 - 4
;***
menu_check_btns:

JSR Read_Btns ;Get Buttons status
CMPA #$00 ;Check if a button was pressed
BEQ menu_return_back ;If not, return

menu_check_btn1_1:
BITA #$01 ;Check if btn1_1 was pressed
BEQ menu_check_btn1_2 ;If not, check btn1_2
LDA Vec_Prev_Btns ;Check if btn 3 was pressed, if not,
BITA $04 ;scroll 1 up, else, scroll 4 up
BEQ scroll_1_up
;;;Scroll up 4 games
LDA GameIndex ;Same idea as before but +4 instead of
CMPA #$04 ;+1
BLE menu_return_back
SUBA #$04
STA GameIndex
RTS ;Return

scroll_1_up:
;;;scroll up one game:
LDA GameIndex ;A <- GameIndex
BEQ menu_return_back ;If A=0 no GameIndex change
DEC GameIndex ;otherwise, point to previous game
RTS ;Return to main program

menu_check_btn1_2:
BITA #$02 ;Check if, btn1_2 was pressed
BEQ menu_check_btn1_4 ;If not, check btn1_4
LDA Vec_Prev_Btns ;Check if btn 3 was pressed, if not,
BITA $04 ;scroll 1 down, else, scroll 4 down
BEQ scroll_1_down
;;;Scroll down 4 games
LDA GameIndex ;Same idea as before but -4 instead of
CMPA #(NUMBER_OF_GAMES-4) ;-1
BGE menu_return_back

Vectrex Multicart: How does it work?

06/08/00 20

ADDA #$04
STA GameIndex
RTS

scroll_1_down:
;;;scroll down one game:
LDA GameIndex ;A <- GameIndex
CMPA #(NUMBER_OF_GAMES-1) ;Check if exeeded the last game in the
BGE menu_return_back ;list. If not, point to the next game.
INC GameIndex ;otherwise, return to main program
RTS ;Return to main program

menu_check_btn1_4:
BITA #$08 ;Check if, btn1_4 was pressed
BEQ menu_return_back ;If not, return
JSR start_selected_game

menu_return_back:
RTS ;Return to main loop

;***
; This table contains the offset address within the game to start (i.e., the
; address right after the "magic init" section of each game.
; The 2nd entry is the location of the game in the big memory.
;***
start_loc_tbl:

DW D_CRAZY_START, D_CRAZY_JMP ;Menu item #00
DW D_MINESTORM_START, D_MINESTORM_JMP ;Menu item #01
DW D_NARROW_START, D_NARROW_START ;Menu item #02
DW D_ROTOCU_START, D_ROTOCU_JMP ;Menu item #03
DW ARMOR_START, ARMOR_JMP ;Menu item #04
DW ART_START, ART_JMP ;Menu item #05
DW BEDLAM_START, BEDLAM_JMP ;Menu item #06
DW BERZERK_START, BERZERK_JMP ;Menu item #07
DW BLITZ_START, BLITZ_JMP ;Menu item #08
DW SWEEP_START, SWEEP_JMP ;Menu item #09
DW CHASM_START, CHASM_JMP ;Menu item #10
DW DARKT_START, DARKT_JMP ;Menu item #11
DW ENGINE_START, ENGINE_JMP ;Menu item #12
DW FNARZOD_START, FNARZOD_JMP ;Menu item #13
DW FROGGER_START, FROGGER_JMP ;Menu item #14
DW GALAXIAN_START, GALAXIAN_JMP ;Menu item #15
DW HEADSUP_START, HEADSUP_JMP ;Menu item #16
DW HYPER_START, HYPER_JMP ;Menu item #17
DW MELODY_START, MELODY_JMP ;Menu item #18
DW MINE2_START, MINE2_JMP ;Menu item #19
DW POLAR_START, POLAR_JMP ;Menu item #20
DW POLE_START, POLE_JMP ;Menu item #21
DW RIPOFF_START, RIPOFF_JMP ;Menu item #22
DW ROM_START, ROM_JMP ;Menu item #23
DW SCRAMBLE_START, SCRAMBLE_JMP ;Menu item #24
DW SOLAR_START, SOLAR_JMP ;Menu item #25
DW SPACEWAR_START, SPACEWAR_JMP ;Menu item #26
DW SPIKE_START, SPIKE_JMP ;Menu item #27
DW SPINB_START, SPINB_JMP ;Menu item #28
DW SCASTLE_START, SCASTLE_JMP ;Menu item #29
DW STARDEMO_START, STARDEMO_JMP ;Menu item #30
DW SHAWK_START, SHAWK_JMP ;Menu item #31
DW STREK_START, STREK_JMP ;Menu item #32
DW STREK2_START, STREK2_JMP ;Menu item #33
DW TEST_START, TEST_JMP ;Menu item #34
DW VABM_START, VABM_JMP ;Menu item #35
DW VRACE_START, VRACE_JMP ;Menu item #36
DW VPONG_START, VPONG_JMP ;Menu item #37
DW WEBWAR_START, WEBWAR_JMP ;Menu item #38

Vectrex Multicart: How does it work?

06/08/00 21

;***
; The following section puts the predefined games into their designated memory
; location.The .inc file is basically the BIN file, converted to FCB format +
; the 1F 05 modification.
; This is done till address 0xFFFF (64K) since the compiler doesn't support
; more than that...
;***

ORG 0x1000
INCLUDE "src/multi/games/armor.inc"

ORG 0x2000
INCLUDE "src/multi/games/art.inc"

ORG 0x3000
INCLUDE "src/multi/games/bedlam.inc"

ORG 0x4000
INCLUDE "src/multi/games/berzerk.inc"

ORG 0x5000
INCLUDE "src/multi/games/rotcub.inc"

ORG 0x6000
INCLUDE "src/multi/games/castle.inc"

ORG 0x7000
INCLUDE "src/multi/games/rom.inc"

; Fill the jump table with NOP instruction - no real use but just "cleaner"
ORG 0x7f00

jmp_table:
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12
FCB $12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12,$12

ORG 0x8000
INCLUDE "src/multi/games/chasm.inc"

ORG 0x9000
INCLUDE "src/multi/games/hyper.inc"

ORG 0xA000
INCLUDE "src/multi/games/mine.inc"

ORG 0xB000
INCLUDE "src/multi/games/ripoff.inc"

Vectrex Multicart: How does it work?

06/08/00 22

ORG 0xC000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0xD000
INCLUDE "src/multi/games/scramble.inc"

ORG 0xE000
INCLUDE "src/multi/games/solar.inc"

ORG 0xF000
INCLUDE "src/multi/games/space.inc"

The following section includes the source code for the following 64K segments - all the way up to 512K:
Bank2.asm
;1st 64K bank, will be placed at 0x10000
;Where 4K games continue
�

ORG 0x00000
INCLUDE "src/multi/games/starhawk.inc"

�
ORG 0x01000
INCLUDE "src/multi/games/startrek.inc"

ORG 0x02000
INCLUDE "src/multi/games/sweep.inc"

ORG 0x03000
INCLUDE "src/multi/games/test.inc"

ORG 0x04000
INCLUDE "src/multi/games/trek2.inc"

ORG 0x05000
INCLUDE "src/multi/games/vectrace.inc"

ORG 0x06000
INCLUDE "src/multi/games/vpong.inc"

ORG 0x07000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x08000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x09000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x0A000
INCLUDE "src/multi/games/engine.inc"

ORG 0x0B000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x0C000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x0D000 ;PLACE HOLDER

Vectrex Multicart: How does it work?

06/08/00 23

INCLUDE "src/multi/games/scramble.inc"

ORG 0x0E000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

ORG 0x0F000 ;PLACE HOLDER
INCLUDE "src/multi/games/scramble.inc"

Bank3.asm

;will be placed at 0x20000
;Where 8K games start
�

ORG 0x0000
�

INCLUDE "src/multi/games/3dczycst.inc"

ORG 0x2000
INCLUDE "src/multi/games/blitz.inc"

ORG 0x4000
INCLUDE "src/multi/games/stardemo.inc"

ORG 0x6000
INCLUDE "src/multi/games/headsup.inc"

ORG 0x8000
INCLUDE "src/multi/games/melody.inc"

ORG 0xA000
INCLUDE "src/multi/games/mine3.inc"

ORG 0xC000
INCLUDE "src/multi/games/narrow.inc"

ORG 0xE000
INCLUDE "src/multi/games/nazrod.inc"

Bank4.asm
;will be placed at 0x30000
;Where 8K games continue

�
ORG 0x0000 ;PLACE HOLDER
INCLUDE "src/multi/games/polar.inc"

ORG 0x2000
INCLUDE "src/multi/games/polar.inc"

ORG 0x4000
INCLUDE "src/multi/games/pole.inc"

ORG 0x6000
INCLUDE "src/multi/games/spike.inc"

Vectrex Multicart: How does it work?

06/08/00 24

ORG 0x8000
INCLUDE "src/multi/games/spinball.inc"

ORG 0xA000 ;PLACE HOLDER
INCLUDE "src/multi/games/webwars.inc"

ORG 0xC000
INCLUDE "src/multi/games/webwars.inc"

ORG 0xE000 ;PLACE HOLDER
INCLUDE "src/multi/games/webwars.inc"

Bank5.asm
;will be placed at 0x40000
;Where 16K games start

ORG 0x0000
INCLUDE "src/multi/games/vaboom.inc"

ORG 0x4000 ;PLACE HOLDER
INCLUDE "src/multi/games/vaboom.inc"

ORG 0x8000
INCLUDE "src/multi/games/darktowr.inc"

ORG 0xC000
INCLUDE "src/multi/games/spikesh.inc"

Bank6.asm
;will be placed at 0x50000
;Where 16K games continue
�

ORG 0x0000 ;PLACE HOLDER
INCLUDE "src/multi/games/frogger.inc"

ORG 0x4000
INCLUDE "src/multi/games/galaxian.inc"

ORG 0x8000
INCLUDE "src/multi/games/frogger.inc"

ORG 0xC000 ;PLACE HOLDER
INCLUDE "src/multi/games/frogger.inc"

Bank7.asm
;will be placed at 0x60000
;Where 32K games start

ORG 0x0000 ;PLACE HOLDER
INCLUDE "src/multi/games/spectrum.inc"

ORG 0x8000 ;PLACE HOLDER

Vectrex Multicart: How does it work?

06/08/00 25

INCLUDE "src/multi/games/spectrum.inc"

Bank8.asm
;will be placed at 0x70000
;Where 32K games continue

ORG 0x0000 ;PLACE HOLDER
INCLUDE "src/multi/games/spectrum.inc"

ORG 0x8000 ;PLACE HOLDER
INCLUDE "src/multi/games/spectrum.inc"

The last step involved in making the final BIN is merging all the 8 banks together into a single 512K file.
Once that is achieved an EPROM (or Flash) can be programmed and the "brains" of the multicart is
pretty much ready.

Building a prototype
In order to build my prototype I've used an existing Vectrex cartridge PCB as is with no modifications.
The EPROM socket was replaced by a small board that had EPROM-like pins on one side and the rest
of the components on its other side. The EPROM's signals were routed by soldering wire-wrap wires
between the EPROM, Flash and EPLD as described in the previous sections.

Top view of the prototype is shown below (please ignore the switch and the LEDS - the switch was
designed to be a PAUSE buts due to lack of available I/O on the EPLD it has been left unconnected) :

Price
The total price of the components is as follows:
1 x EPM7032-LC44-10 - $1.75
1 x AM29F040-PC120 - $13.1 - for development only, or, 1 x 27C040-PC120 - $7.5 - for final product
Misc. (wires/sockets/board) - no more than $5

The total comes to $19.85 for development cart or $14.25 for end product (This doesn't include case
and dedicated PCB for this project, which I am not going to make) - In my opinion, at least the goal of
"cheap to build" has been achieved…

Vectrex Multicart: How does it work?

06/08/00 26

Summary
This is a demonstration of one possible way to put together a Vectrex multicart. I'm sure that there is
more than one way to achieve the same goal - maybe even in a simpler fashion. However, this is my
attempt that is proofed to be working (on the single console I've tried it on). I'm sure that this document
didn't cover all the aspects of the hardware and software design but I'm confident that with sufficient
background and with enough time spent understanding this concept everybody can benefit from it.
In addition, reading between the lines of this document should reveal that 32K games might have a
problem when executed in this version of the multicart (EPLD). The reason is that a 32K game can
access address 0x7Fxx - which is a valid address in such a large game. In that case the EPLD gets
confused and latches wrong address and the whole operation gets corrupted. This is not the case, if
the game is smaller than 32K-256 Bytes. The way to solve that is to add a tiny state-machine in the
EPLD that will allow the latch-enable generation only when a specific sequence of addresses has been
accessed. That was also implemented but is not shown here.
And, one last thing: As stated before, my intentions are to demonstrate a feasible way to implement a
Vectrex multicart. As such, I'm not going to sell or provide any related material for this type of project.
Also, the .inc files and source code are not going to be available in any form other then the way they
have been presented here.

Thanks for reading that far,
Keep on gaming and keep the Vectrex alive,
Ronen Habot,
June 2000.

